Is there really a 1 in 6 chance of human extinction this century?

In 2020, Oxford-based philosopher Toby Ord published a book called The Precipice about the risk of human extinction. He put the chances of “existential catastrophe” for our species during the next century at one in six.

It’s quite a specific number, and an alarming one. The claim drew headlines at the time, and has been influential since – most recently brought up by Australian politician Andrew Leigh in a speech in Melbourne.

It’s hard to disagree with the idea we face troubling prospects over the coming decades, from climate change, nuclear weapons and bio-engineered pathogens (all big issues in my view), to rogue AI and large asteroids (which I would see as less concerning).

But what about that number? Where does it come from? And what does it really mean?



Coin flips and weather forecasts​

To answer those questions, we have to answer another first: what is probability?

The most traditional view of probability is called frequentism, and derives its name from its heritage in games of dice and cards. On this view, we know there is a one in six chance a fair die will come up with a three (for example) by observing the frequency of threes in a large number of rolls.

Or consider the more complicated case of weather forecasts. What does it mean when a weatherperson tells us there is a one in six (or 17%) chance of rain tomorrow?

It’s hard to believe the weatherperson means us to imagine a large collection of “tomorrows”, of which some proportion will experience precipitation. Instead, we need to look at a large number of such predictions and see what happened after them.

If the forecaster is good at their job, we should see that when they said “one in six chance of rain tomorrow”, it did in fact rain on the following day one time in every six.

So, traditional probability depends on observations and procedure. To calculate it, we need to have a collection of repeated events on which to base our estimate.



Can we learn from the Moon?​

So what does this mean for the probability of human extinction? Well, such an event would be a one-off: after it happened, there would be no room for repeats.

Instead, we might find some parallel events to learn from. Indeed, in Ord’s book, he discusses a number of potential extinction events, some of which can potentially be examined in light of a history.


file-20231005-29-kna72i.jpg

Counting craters on the Moon can gives us clues about the risk of asteroid impacts on Earth. NASA



For example, we can estimate the chances of an extinction-sized asteroid hitting Earth by examining how many such space rocks have hit the Moon over its history. A French scientist named Jean-Marc Salotti did this in 2022, calculating the odds of an extinction-level hit in the next century at around one in 300 million.

Of course, such an estimate is fraught with uncertainty, but it is backed by something approaching an appropriate frequency calculation. Ord, by contrast, estimates the risk of extinction by asteroid at one in a million, though he does note a considerable degree of uncertainty.



A ranking system for outcomes​

There is another way to think about probability, called Bayesianism after the English statistician Thomas Bayes. It focuses less on events themselves and more on what we know, expect and believe about them.

In very simple terms, we can say Bayesians see probabilities as a kind of ranking system. In this view, the specific number attached to a probability shouldn’t be taken directly, but rather compared to other probabilities to understand which outcomes are more and less likely.

Ord’s book, for example, contains a table of potential extinction events and his personal estimates of their probability. From a Bayesian perspective, we can view these values as relative ranks. Ord thinks extinction from an asteroid strike (one in a million) is much less likely than extinction from climate change (one in a thousand), and both are far less likely than extinction from what he calls “unaligned artificial intelligence” (one in ten).

The difficulty here is that initial estimates of Bayesian probabilities (often called “priors”) are rather subjective (for instance, I would rank the chance of AI-based extinction much lower). Traditional Bayesian reasoning moves from “priors” to “posteriors” by again incorporating observational evidence of relevant outcomes to “update” probability values.

And once again, outcomes relevant to the probability of human extinction are thin on the ground.

Subjective estimates​

There are two ways to think about the accuracy and usefulness of probability calculations: calibration and discrimination.

Calibration is the correctness of the actual values of the probabilities. We can’t determine this without appropriate observational information. Discrimination, on the other hand, simply refers to the relative rankings.

We don’t have a basis to think Ord’s values are properly calibrated. Of course, this is not likely to be his intent. He himself indicates they are mostly designed to give “order of magnitude” indications.

Even so, without any related observational confirmation, most of these estimates simply remain in the subjective domain of prior probabilities.



Not well calibrated – but perhaps still useful​

So what are we to make of “one in six”? Experience suggests most people have a less than perfect understanding of probability (as evidenced by, among other things, the ongoing volume of lottery ticket sales). In this environment, if you’re making an argument in public, an estimate of “probability” doesn’t necessarily need to be well calibrated – it just needs to have the right sort of psychological impact.

From this perspective, I’d say “one in six” fits the bill nicely. “One in 100” might feel small enough to ignore, while “one in three” might drive panic or be dismissed as apocalyptic raving.

As a person concerned about the future, I hope risks like climate change and nuclear proliferation get the attention they deserve. But as a data scientist, I hope the careless use of probability gets left by the wayside and is replaced by widespread education on its true meaning and appropriate usage.

This article was first published on The Conversation, and was written by Steven Stern, Professor of Data Science, Bond University

 
  • Like
Reactions: Babybird and Abby2
Sponsored
In 2020, Oxford-based philosopher Toby Ord published a book called The Precipice about the risk of human extinction. He put the chances of “existential catastrophe” for our species during the next century at one in six.

It’s quite a specific number, and an alarming one. The claim drew headlines at the time, and has been influential since – most recently brought up by Australian politician Andrew Leigh in a speech in Melbourne.

It’s hard to disagree with the idea we face troubling prospects over the coming decades, from climate change, nuclear weapons and bio-engineered pathogens (all big issues in my view), to rogue AI and large asteroids (which I would see as less concerning).

But what about that number? Where does it come from? And what does it really mean?



Coin flips and weather forecasts​

To answer those questions, we have to answer another first: what is probability?

The most traditional view of probability is called frequentism, and derives its name from its heritage in games of dice and cards. On this view, we know there is a one in six chance a fair die will come up with a three (for example) by observing the frequency of threes in a large number of rolls.

Or consider the more complicated case of weather forecasts. What does it mean when a weatherperson tells us there is a one in six (or 17%) chance of rain tomorrow?

It’s hard to believe the weatherperson means us to imagine a large collection of “tomorrows”, of which some proportion will experience precipitation. Instead, we need to look at a large number of such predictions and see what happened after them.

If the forecaster is good at their job, we should see that when they said “one in six chance of rain tomorrow”, it did in fact rain on the following day one time in every six.

So, traditional probability depends on observations and procedure. To calculate it, we need to have a collection of repeated events on which to base our estimate.



Can we learn from the Moon?​

So what does this mean for the probability of human extinction? Well, such an event would be a one-off: after it happened, there would be no room for repeats.

Instead, we might find some parallel events to learn from. Indeed, in Ord’s book, he discusses a number of potential extinction events, some of which can potentially be examined in light of a history.


file-20231005-29-kna72i.jpg

Counting craters on the Moon can gives us clues about the risk of asteroid impacts on Earth. NASA



For example, we can estimate the chances of an extinction-sized asteroid hitting Earth by examining how many such space rocks have hit the Moon over its history. A French scientist named Jean-Marc Salotti did this in 2022, calculating the odds of an extinction-level hit in the next century at around one in 300 million.

Of course, such an estimate is fraught with uncertainty, but it is backed by something approaching an appropriate frequency calculation. Ord, by contrast, estimates the risk of extinction by asteroid at one in a million, though he does note a considerable degree of uncertainty.



A ranking system for outcomes​

There is another way to think about probability, called Bayesianism after the English statistician Thomas Bayes. It focuses less on events themselves and more on what we know, expect and believe about them.

In very simple terms, we can say Bayesians see probabilities as a kind of ranking system. In this view, the specific number attached to a probability shouldn’t be taken directly, but rather compared to other probabilities to understand which outcomes are more and less likely.

Ord’s book, for example, contains a table of potential extinction events and his personal estimates of their probability. From a Bayesian perspective, we can view these values as relative ranks. Ord thinks extinction from an asteroid strike (one in a million) is much less likely than extinction from climate change (one in a thousand), and both are far less likely than extinction from what he calls “unaligned artificial intelligence” (one in ten).

The difficulty here is that initial estimates of Bayesian probabilities (often called “priors”) are rather subjective (for instance, I would rank the chance of AI-based extinction much lower). Traditional Bayesian reasoning moves from “priors” to “posteriors” by again incorporating observational evidence of relevant outcomes to “update” probability values.

And once again, outcomes relevant to the probability of human extinction are thin on the ground.

Subjective estimates​

There are two ways to think about the accuracy and usefulness of probability calculations: calibration and discrimination.

Calibration is the correctness of the actual values of the probabilities. We can’t determine this without appropriate observational information. Discrimination, on the other hand, simply refers to the relative rankings.

We don’t have a basis to think Ord’s values are properly calibrated. Of course, this is not likely to be his intent. He himself indicates they are mostly designed to give “order of magnitude” indications.

Even so, without any related observational confirmation, most of these estimates simply remain in the subjective domain of prior probabilities.



Not well calibrated – but perhaps still useful​

So what are we to make of “one in six”? Experience suggests most people have a less than perfect understanding of probability (as evidenced by, among other things, the ongoing volume of lottery ticket sales). In this environment, if you’re making an argument in public, an estimate of “probability” doesn’t necessarily need to be well calibrated – it just needs to have the right sort of psychological impact.

From this perspective, I’d say “one in six” fits the bill nicely. “One in 100” might feel small enough to ignore, while “one in three” might drive panic or be dismissed as apocalyptic raving.

As a person concerned about the future, I hope risks like climate change and nuclear proliferation get the attention they deserve. But as a data scientist, I hope the careless use of probability gets left by the wayside and is replaced by widespread education on its true meaning and appropriate usage.

This article was first published on The Conversation, and was written by Steven Stern, Professor of Data Science, Bond University

 
Seriously! The likelihood of a meteor strike is more likely than climate change making the human race extinct I would think!
The talk of these Extinction Revolution crazies should be stopped - it really traumatises young impressionable people who hang on the words of manipulated persons such as Greta Thunberg!! The world organisations who rave on about this like a mob of fundamentalist religious nuts should be ashamed!! Yes the climate is changing, yes we should have more respect for our planet, yes we should each try to reduce waste, care about our waterways, seas, air etc etc or we will create havoc on people & animals. But we need to stop the greed, the destruction of families, the disregard for society’s laws, the mindless slaughter of our fellow humans in countless ways & go back to Gods ways! Whatever faith people have, most of the worlds religions are based on goodness & concern for all, people, animals & our Earth!
I, being a person of faith, think Gods prob disappointed with the way we are carrying on but He loves us & I don’t think He’s going to allow us to destroy this beautiful world He’s given us!
I’m optimistic that this new generation will navigate their way so that they can put the new technologies to good use & have respect for nature in all its wonder & awe!! AI will never replace humans, only humans replace humans - it’s called Life & Death & it’s sacred!
 
  • Like
Reactions: maherdj
In 2020, Oxford-based philosopher Toby Ord published a book called The Precipice about the risk of human extinction. He put the chances of “existential catastrophe” for our species during the next century at one in six.

It’s quite a specific number, and an alarming one. The claim drew headlines at the time, and has been influential since – most recently brought up by Australian politician Andrew Leigh in a speech in Melbourne.

It’s hard to disagree with the idea we face troubling prospects over the coming decades, from climate change, nuclear weapons and bio-engineered pathogens (all big issues in my view), to rogue AI and large asteroids (which I would see as less concerning).

But what about that number? Where does it come from? And what does it really mean?



Coin flips and weather forecasts​

To answer those questions, we have to answer another first: what is probability?

The most traditional view of probability is called frequentism, and derives its name from its heritage in games of dice and cards. On this view, we know there is a one in six chance a fair die will come up with a three (for example) by observing the frequency of threes in a large number of rolls.

Or consider the more complicated case of weather forecasts. What does it mean when a weatherperson tells us there is a one in six (or 17%) chance of rain tomorrow?

It’s hard to believe the weatherperson means us to imagine a large collection of “tomorrows”, of which some proportion will experience precipitation. Instead, we need to look at a large number of such predictions and see what happened after them.

If the forecaster is good at their job, we should see that when they said “one in six chance of rain tomorrow”, it did in fact rain on the following day one time in every six.

So, traditional probability depends on observations and procedure. To calculate it, we need to have a collection of repeated events on which to base our estimate.



Can we learn from the Moon?​

So what does this mean for the probability of human extinction? Well, such an event would be a one-off: after it happened, there would be no room for repeats.

Instead, we might find some parallel events to learn from. Indeed, in Ord’s book, he discusses a number of potential extinction events, some of which can potentially be examined in light of a history.


file-20231005-29-kna72i.jpg

Counting craters on the Moon can gives us clues about the risk of asteroid impacts on Earth. NASA



For example, we can estimate the chances of an extinction-sized asteroid hitting Earth by examining how many such space rocks have hit the Moon over its history. A French scientist named Jean-Marc Salotti did this in 2022, calculating the odds of an extinction-level hit in the next century at around one in 300 million.

Of course, such an estimate is fraught with uncertainty, but it is backed by something approaching an appropriate frequency calculation. Ord, by contrast, estimates the risk of extinction by asteroid at one in a million, though he does note a considerable degree of uncertainty.



A ranking system for outcomes​

There is another way to think about probability, called Bayesianism after the English statistician Thomas Bayes. It focuses less on events themselves and more on what we know, expect and believe about them.

In very simple terms, we can say Bayesians see probabilities as a kind of ranking system. In this view, the specific number attached to a probability shouldn’t be taken directly, but rather compared to other probabilities to understand which outcomes are more and less likely.

Ord’s book, for example, contains a table of potential extinction events and his personal estimates of their probability. From a Bayesian perspective, we can view these values as relative ranks. Ord thinks extinction from an asteroid strike (one in a million) is much less likely than extinction from climate change (one in a thousand), and both are far less likely than extinction from what he calls “unaligned artificial intelligence” (one in ten).

The difficulty here is that initial estimates of Bayesian probabilities (often called “priors”) are rather subjective (for instance, I would rank the chance of AI-based extinction much lower). Traditional Bayesian reasoning moves from “priors” to “posteriors” by again incorporating observational evidence of relevant outcomes to “update” probability values.

And once again, outcomes relevant to the probability of human extinction are thin on the ground.

Subjective estimates​

There are two ways to think about the accuracy and usefulness of probability calculations: calibration and discrimination.

Calibration is the correctness of the actual values of the probabilities. We can’t determine this without appropriate observational information. Discrimination, on the other hand, simply refers to the relative rankings.

We don’t have a basis to think Ord’s values are properly calibrated. Of course, this is not likely to be his intent. He himself indicates they are mostly designed to give “order of magnitude” indications.

Even so, without any related observational confirmation, most of these estimates simply remain in the subjective domain of prior probabilities.



Not well calibrated – but perhaps still useful​

So what are we to make of “one in six”? Experience suggests most people have a less than perfect understanding of probability (as evidenced by, among other things, the ongoing volume of lottery ticket sales). In this environment, if you’re making an argument in public, an estimate of “probability” doesn’t necessarily need to be well calibrated – it just needs to have the right sort of psychological impact.

From this perspective, I’d say “one in six” fits the bill nicely. “One in 100” might feel small enough to ignore, while “one in three” might drive panic or be dismissed as apocalyptic raving.

As a person concerned about the future, I hope risks like climate change and nuclear proliferation get the attention they deserve. But as a data scientist, I hope the careless use of probability gets left by the wayside and is replaced by widespread education on its true meaning and appropriate usage.

This article was first published on The Conversation, and was written by Steven Stern, Professor of Data Science, Bond University

I would not put too much credence there has been so many predictions gloom, it's scaring the kids. As far as 1 kid I was baby sitting he felt anxious after seeing something on YouTube about world ending he said am only 9 he was scared, I had to assure him the world was not going to end. People predict but it does not mean it's going to happen, please watch what you say it's scary to us adults when you put together the doom and gloom, can you imagine how, how double scary for the kids.?

Let's live each day like its a gift not think about the negative than a shift will happen to the positive.

And do we really want to know so we live our lives in fear instead of enjoying every precious moment we have.
 
  • Like
Reactions: PattiB
'k off!
We've been on the planet, in one form or another, at least 200,000 years without going extinct despite every wobbly that Nature has thrown, including several Ice Ages (try THAT for size, you ClimateChangeExtinctionRebels). Other species, a damned sight longer. How anyone can try to peg any odds on it happening within the current century is beyond comprehension.
 
  • Like
Reactions: Jest
When the Bearuo of Metrology predicts a 17% chance of rain, it says that 17% of the viewing area has a chance of rain.
 
  • Like
Reactions: maherdj
Climate change is not a risk in any way, shape or form. It is astonishing that so many people are gullible enough to have been sucked into and fallen for what is actually the greatest scam the world has ever seen. The statement "95%of published scientists believe in climate change" is just a play on words. Most scientists do not believe in climate change but their work is not published and some have been fired for not believing. Climate change has become a religion. A whole industry has been built around it i.e. the fear industry, designed to separate gullible souls from their hard earned money.

If anyone gets it in their head, to castigate me for my post, forget it. I am not at all interested in you proselytizing for your climate change religion.
 
Last edited:
Climate change is not a risk in any way, shape or form. It is astonishing that so many people are gullible enough to have been sucked into and fallen for what is actually the greatest scam the world has ever seen. The statement "95%of published scientists believe in climate change" is just a play on words. Most scientists do not believe in climate change but their is not published and some have been fired for not believing. Climate change has become a religion. A whole industry has been built around it i.e. the fear industry, designed to separate gullible souls from their hard earned money.

If anyone gets it in their head, to castigate me for my post, forget it. I am not at all interested in you proselytizing for your climate change religion.
we have had climate change all over Australia. we are having a heat wave on one side, we are having floods on the other and fires somewhere else. we now even have catastrophic weather. watch this name it is getting flogged now. Al Gore is the only one laughing while we have stupid Bowen and his stupid followers.
 
  • Like
Reactions: maherdj
Climate change is not a risk in any way, shape or form. It is astonishing that so many people are gullible enough to have been sucked into and fallen for what is actually the greatest scam the world has ever seen. The statement "95%of published scientists believe in climate change" is just a play on words. Most scientists do not believe in climate change but their is not published and some have been fired for not believing. Climate change has become a religion. A whole industry has been built around it i.e. the fear industry, designed to separate gullible souls from their hard earned money.

If anyone gets it in their head, to castigate me for my post, forget it. I am not at all interested in you proselytizing for your climate change religion.
I am with you. read down.
 

Join the conversation

News, deals, games, and bargains for Aussies over 60. From everyday expenses like groceries and eating out, to electronics, fashion and travel, the club is all about helping you make your money go further.

Seniors Discount Club

The SDC searches for the best deals, discounts, and bargains for Aussies over 60. From everyday expenses like groceries and eating out, to electronics, fashion and travel, the club is all about helping you make your money go further.
  1. New members
  2. Jokes & fun
  3. Photography
  4. Nostalgia / Yesterday's Australia
  5. Food and Lifestyle
  6. Money Saving Hacks
  7. Offtopic / Everything else

Latest Articles

  • We believe that retirement should be a time to relax and enjoy life, not worry about money. That's why we're here to help our members make the most of their retirement years. If you're over 60 and looking for ways to save money, connect with others, and have a laugh, we’d love to have you aboard.
  • Advertise with us

User Menu

Enjoyed Reading our Story?

  • Share this forum to your loved ones.
Change Weather Postcode×
Change Petrol Postcode×